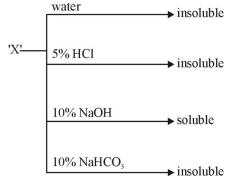


Date Planned : / /	Daily Tutorial Sheet-5	Expected Duration : 45 Min	
Actual Date of Attempt : / /	JEE Main Archive	Exact Duration :	

61. The IUPAC name of the following compound is :

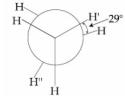

(2019)

$$\begin{array}{c} \operatorname{CH}_3 & \operatorname{OH} \\ | & | \\ \operatorname{H}_3\operatorname{C} - \operatorname{CH} - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{COOH} \end{array}$$

- (A) 4-Methyl-3-hydroxypentanoic acid
- **(B)** 2-Methyl-3-hydroxypentan-5-oic acid
- (C) 3-Hydroxy-4-methylpentanoic acid
- **(D)** 4,4-Dimethyl-3-hydroxybutanoic acid

62. An organic compound 'X' showing the following solubility profile is:

(2019)



- (A) m-Cresol
- **(B)** o-Toluidine
- (C) Oleic acid
- (D) Benzamide
- An organic compound 'A' is oxidized with Na_2O_2 followed by boiling with HNO_3 . The resultant solution is then treated with ammonium molybdate to yield a yellow precipitate. Based on above observation, the element present in the given compound is:

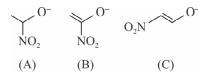
 (2019)
 - (A) Sulphur
- (B) Fluorine
- (C) Phosphorus
- (D) Nitrogen
- **64.** Which one of the following is likely to give a precipitate with $AgNO_3$ solution?
- (2019)


(2019)

- (**A**) CCl₄
- **(B)** $(CH_3)_3CC1$
- C) CHCl₃
- **(D)** $CH_2 = CH = Cl$
- **65.** In the following skew conformation of ethane, H' C C H'' dihedral angle is:

- **(A)** 120°
- **(B)** 149°
- **(C)** 58°
- **(D)** 151°

- **66.** The IUPAC name for the following compound is :
 - (A) 3-methyl-4-(1-methylprop-2-ynyl)-1-heptene
 - **(B)** 3,5-dimethyl-4-propylhept-1-en-6-yne
 - (C) 3,5-dimethyl-4-propylhept-6-en-1-yne
 - **(D)** 3-methyl-4-(3-methylprop-1-enyl)-1-heptyne
- CH₃ (2019)



67.	In chromatography	which of the following statemer	ats is INCORRECT for Re	?	(2019)
01.	in cinomatography	winch of the following statemen			(2010)

- R_f value depends on the type of chromatography (A)
- **(B)** Higher R_f value means higher adsorption
- (C) The value of R_f can not be more than one
- (D) ${\rm R}_{\rm f}\,$ value dependent on the mobile phase

(A) Torsional strain

- **(B)** Angle strain
- (C) Electrostatic forces of interaction
- (D) Steric interactions

- (A) (B) > (A) > (C) (B)
- (B) > (C) > (A)
- (C) (C) > (B) > (A) (D)
- (C) > (A) > (B)

(A), (B) and (C) (A)

- (B)
 - (B), (C) and (A)

(2020)

(2020)

(C) (C), (A) and (B) (D) (B), (A) and (C)

(A)

 $CH_3CH_2 - C \equiv N$

(C) $C_6H_5NH_2$ (D) $C_6H_5NO_2$

(2020)

 $Cl - CH = CH_2$ (A)

 $Cl - CH = CH - OCH_3$ **(B)**

(C) $Cl - CH = CH - NO_2$ (D) $Cl - CH = CH - CH_3$

- (A) simple distillation, 3-methyl pentane
- (B) fractional distillation, 3-methyl pentane
- (C) simple distillation, isohexane
- (D) fractional distillation, isohexane

$$\textbf{74.} \qquad \text{The predominant intermolecular forces present in ethyl acetate, a liquid, are:} \\$$

(2020)

- London dispersion, dipole-dipole and hydrogen bonding (A)
- **(B)** London dispersion and dipole-dipole
- (C) Dipole-Dipole and hydrogen bonding
- Hydrogen bonding and London dispersion (D)